Showing posts with label data leakage. Show all posts
Showing posts with label data leakage. Show all posts

Wednesday, March 26, 2014

A Bigger Stick To Reduce Data Breaches

On average I receive a postal letter from a bank or retailer every two months telling me that I’ve become the unfortunate victim of a data theft or that my credit card is being re-issued to prevent against future fraud. When I quiz my friends and colleagues on the topic, it would seem that they too suffer the same fate on a reoccurring schedule. It may not be that surprising to some folks. 2013 saw over 822 million private records exposed according to the folks over at DatalossDB – and that’s just the ones that were disclosed publicly.

It’s clear to me that something is broken and it’s only getting worse. When it comes to the collection of personal data, too many organizations have a finger in the pie and are ill equipped (or prepared) to protect it. In fact I’d question why they’re collecting it in the first place. All too often these organizations – of which I’m supposedly a customer – are collecting personal data about “my experience” doing business with them and are hoping to figure out how to use it to their profit (effectively turning me in to a product). If these corporations were some bloke visiting a psychologist, they’d be diagnosed with a hoarding disorder. For example, consider what criteria the DSM-5 diagnostic manual uses to identify the disorder:

  • Persistent difficulty discarding or parting with possessions, regardless of the value others may attribute to these possessions.
  • This difficulty is due to strong urges to save items and/or distress associated with discarding.
  • The symptoms result in the accumulation of a large number of possessions that fill up and clutter active living areas of the home or workplace to the extent that their intended use is no longer possible.
  • The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning.
  • The hoarding symptoms are not due to a general medical condition.
  • The hoarding symptoms are not restricted to the symptoms of another mental disorder.

Whether or not the organizations hording personal data know how to profit from it or not, it’s clear that even the biggest of them are increasingly inept at protecting it. The criminals that are pilfering the data certainly know what they’re doing. The gray market for identity laundering has expanded phenomenally since I talked about at Blackhat in 2010.

We can moan all we like about the state of the situation now, but we’ll be crying in the not too distant future when statistically we progress from being a victim to data loss, to being a victim of (unrecoverable) fraud.

The way I see it, there are two core components to dealing with the spiraling problem of data breaches and the disclosure of personal information. We must deal with the “what data are you collecting and why?” questions, and incentivize corporations to take much more care protecting the personal data they’ve been entrusted with.

I feel that the data hording problem can be dealt with fairly easily. At the end of the day it’s about transparency and the ability to “opt out”. If I was to choose a role model for making a sizable fraction of this threat go away, I’d look to the basic component of the UK’s Data Protection Act as being the cornerstone of a solution – especially here in the US. I believe the key components of personal data collection should encompass the following:

  • Any organization that wants to collect personal data must have a clearly identified “Data Protection Officer” who not only is a member of the executive board, but is personally responsible for any legal consequences of personal data abuse or data breaches.
  • Before data can be collected, the details of the data sought for collection, how that data is to be used, how long it would be retained, and who it is going to be used by, must be submitted for review to a government or legal authority. I.e. some third-party entity capable of saying this is acceptable use – a bit like the ethics boards used for medical research etc.
  • The specifics of what data a corporation collects and what they use that data for must be publicly visible. Something similar to the nutrition labels found on packaged foods would likely be appropriate – so the end consumer can rapidly discern how their private data is being used.
  • Any data being acquired must include a date of when it will be automatically deleted and removed.
  • At any time any person can request a copy of any and all personal data held by a company about themselves.
  • At any time any person can request the immediate deletion and removal of all data held by a company about themselves.

If such governance existed for the collection and use of personal data, then the remaining big item is enforcement. You’d hope that the morality and ethics of corporations would be enough to ensure they protected the data entrusted to them with the vigor necessary to fight off the vast majority of hackers and organized crime, but this is the real world. Apparently the “big stick” approach needs to be reinforced.

A few months ago I delved in to how the fines being levied against organizations that had been remiss in doing all they could to protect their customer’s personal data should be bigger and divvied up. Essentially I’d argue that half of the fine should be pumped back in to the breached organization and used for increasing their security posture.

Looking at the fines being imposed upon the larger organizations (that could have easily invested more in protecting their customers data prior to their breaches), the amounts are laughable. No noticeable financial pain occurs, so why should we be surprised if (and when) it happens again. I’ve become a firm believer that the fines businesses incur should be based upon a percentage of valuation. Why should a twenty-billion-dollar business face the same fine for losing 200,000,000 personal records as a ten-million-dollar business does for losing 50,000 personal records? If the fine was something like two-percent of valuation, I can tell you that the leadership of both companies would focus more firmly on the task of keeping yours and mine data much safer than they do today. 

-- Gunter Ollmann

First Published: IOActive Blog - March 26, 2014

Sunday, March 21, 2010

Botnet Prevention with DLP Technologies

Last week I was asked a couple of times how good Data Leakage Prevention (DLP) products are at protecting against botnets. Before I get started describing the pro's and con's of DLP in combating professional botnet operations, there are a few things I probably need to make clear - as it'll help add some perspective to the angle I'm coming from.

As you probably already know, I spent a fair amount of time developing and improving Intrusion Prevention System (IPS) technologies in my tenure with ISS (and then later, under IBM). During that time there were a number of market dynamics that required me to spend quite a bit of time reviewing, analyzing and evaluating the various DLP technologies - both at the host and then network levels. In general though, I was not impressed with the technology - and still aren't. From my perspective, DLP is a bit of a white elephant and is probably going to go down in the annuls of Security History in the chapter next to NAC. Don't get me wrong, as a concept DLP has its place, but in practice it fails to provide any compelling features that aren't (or can't be) delivered using other more common (and existing) enterprise security technologies.

Now, being a networking kind of guy, the thing I find most interesting about network-based DLP is the show and dance the various DLP vendors make about Deep Packet Inspection (DPI) - you'd almost think that they invented the technology and that it only to DLP. Lets get this straight from the beginning - DPI existed within IPS (and IDS) for 5+ years before even the first DLP companies became incorporated and, whats more, products like ISS' Proventia fully parse many hundreds of networking and content-level protocols - many times more than even the most mature dedicated DLP product out there.

So, if you're thinking DLP is a new and vital technology to roll out in your enterprise (particularly at the network layer), my advice would be to look to a top-tier IPS appliance instead because you'll find better protocol and content inspection coverage, and higher capabilities in inspecting traffic for critical data leakage. One day I'd love to see a head-to-head appliance review of the various vendors products detecting and defending against all the most common data leakage techniques/tactics.

DLP and Botnets
So, how useful is DLP in combating botnets? First of all, we obviously need some degree of clarification about "combating botnets". Lets break this down in to three separate botnet attack phases:
  1. Preventing hosts from becoming botnet victims,
  2. Detecting and stopping the leakage of confidential corporate information,
  3. Cleanup and remediation of bot infected victims.
Preventing hosts from becoming botnet victims
In order to understand DLP capabilities in preventing hosts from becoming botnet victims (from a network perspective), we need to bear in mind the limitations of DPI and the most common mechanisms hosts succumb to being compromised and joining a botnet.
  • Criminals leverage a broad spectrum of attack vectors in order to compromise their target - with the most common being spam/phishing emails that convince the user to infecting themselves, malicious drive-by-download sites the exploit vulnerabilities in the Web browser and removable media worming (e.g. USB devices). Unless the DLP solution is configured to watch inbound network traffic and scrutinize URL's (perhaps using a URL blacklist for checking against), the probability of detecting the malicious payloads is remote - and anti-spam and perimeter Web gateway technologies would be a much more effective solution here. IPS technologies would also excel in dealing with the exploits being used to compromise the Web browser vulnerabilities.
  • Inspection of the HTTP/FTP/etc. downloads or email attachments is of course possible - but it will be a struggle to to identify the malicious intent of the binary files, but should best be dealt with using anti-virus technologies - particularly products with good behavioral analysis engines and, in a pinch, virtual/sandbox dynamic-analysis of malware.
I think you would be hard pressed to use DLP technologies as an effective tool for preventing hosts from becoming botnet victims.

Detecting and stopping the leakage of confidential corporate information
Detecting the information leakage from bot infected hosts should be an easy task - after all, that's supposed to be DLP's bread and butter. Unfortunately it's not quite as easy as it sounds.
  • The signatures (or "fingerprints") DLP devices use are generally tuned to specific forms of structured data. For example, SSN's, credit card details and address details have a specific structure. As such, DLP solutions are generally good at spotting this kind data being transmitted across a network and leaking from the enterprise (just as IPS's can too). As such, DLP appliances can easily detect the "clear text" transport of these kinds of data.
  • Unfortunately, botnet operators tend not to transport/extract confidential data past perimeter inspection/detection technologies in "clear text". Obviously, if the bot agent chooses to transport the data to a remote server over HTTPS, then all the traffic will be encrypted. But botnet operators don't even need to do that...
  • Purchasing, managing and configuring Web server certificates for HTTPS can be tedious and can often result in "invalid certificate" alerts - which would in turn alert the user of any folks inspecting the system logs. As such, many botnet operators have decided to not use HTTPS - instead they extract their stolen data over un-encrypted HTTP, but they compress and encrypt the data they're stealing from on the victims machine before sending. I.e. the transport is unencrypted, by the file being transferred is itself encrypted and cannot be inspected by DLP (or any other DPI technology).
  • Armed with a blacklist of known botnet Command and Control (CnC) channels or file drop-boxes, the DLP solution could keep watch over who the victim system is communicating with and block those - but there are already plenty of IP/Domain/URL blocking technologies already out there that are more efficient.
  • It's important to understand that many professional botnet operators have moved away from stealing classic datasets (e.g. credit card details, SSN's, etc.), and towards more valuable datasets (e.g. software source code, CFO banking credentials, prototype designs) - which happen to be considerably more difficult to detect with DLP technologies (especially if the data is encrypted of course).
  • DLP is limited to specific protocols and specific file/attachment types for inspection. To evade detection, the criminal botnet operator just needs to use an "unsupported" protocol/format.
Cleanup and remediation of bot infected victims
Well, I can't think of anything that DLP offers in this realm.

Clobbering Botnets with DLP
In general, DLP makes for a very poor anti-botnet technology. DLP is adequate enough detecting the simple stuff - e.g. a user sending an email with 10,000 credit card details - but is ill positioned to detect an automated bot agent obfuscating or encrypting a compressed file of corporate secrets.

In fact, as far as I'm concerned, I can't really see a reason for it existing as a separate security technology anyway. Existing IPS technologies and signatures include just about all of the data leakage detection features already.

That all said, DLP is probably adequate enough for detecting stupid user mistakes, but useless for combating professional criminals - whether they're botnet operators or insider threats.